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Abstract— The increase in huge amount of data is 

seen clearly in present days because of requirement 

for storing more information. To extract certain data 

from this large database is a very difficult task. This 

leads to the researchers to drag themselves for 

developing better technique to mine the required 

data. There are various techniques proposed by 

several researchers to deal with this difficulty.   

Among various available techniques, association rule 

mining for extract the required data from the 

database is found to be better. This paper presents 

the IMine index, a general and compact structure 

which provides tight integration of item set extraction 

in a relational DBMS Since no constraint is enforced 

during the index creation phase, IMine provides a 

complete representation of the original database. To 

reduce the I/O cost, data accessed together during the 

same extraction phase are clustered on the same disk 

block. Experiments, run for both sparse and dense 

data distributions, show the efficiency of the proposed 

index and its linear scalability also for large data sets. 

Index Terms— Object Oriented Approach; 

IMine; Index Support; Item Set Mining.  

I. INTRODUCTION 

DATA mining is provoked by decision support 

difficulties featured by majority of business 

organizations and is illustrated as an significant 

field of research. One of the major difficulties in 

data mining is creating fast and efficient techniques 

that can deals with large volumes of data as majority 

mining techniques carry out computation over the 

complete database and frequently the databases are 

in huge size.  Physical analysis of these huge 

amount of information stored in modern databases 

is very difficult. A recognized data mining 

technique is association rule mining. It is able to 

discover all interesting relationships which are 

called as associations in a database. Association 

rules are very efficient in revealing all the 

interesting relationships in a relatively large 

database with huge amount of data. The large 

quantity of information collected through the set of 

association rules can be used not only for 

illustrating the relation-ships in the database, but 

also used for differentiating between different kinds 

of classes in a database. But the major difficulty in 

association rule mining is its complexity. 

Research activity usually focuses on 

defining efficient algorithms for item set extraction, 

which represents the most computationally 

intensive knowledge extraction task in association 

rule mining [1]. The data to be analyzed is usually 

stored into binary files, possibly extracted from a 

DBMS. Most algorithms [2, 3] exploit ad hoc main 

memory data structures to efficiently extract item 

sets from a flat file. Recently, disk-based extraction 

algorithms have been proposed to support the 

extraction from large data sets [4,5,6 ], but still 

dealing with data stored in flat files. To reduce the 

computational cost of item set extraction, different 

constraints maybe enforced [7,8,9 ], among which 

the most simple is the support constraint, which 

enforces a threshold on the minimum support of the 

extracted item sets. 

Relational DBMSs exploit indices, which 

are ad hoc data structures, to enhance query 

performance and support the execution of complex 

queries. In this paper, we propose a similar 

approach to support data mining queries. The IMine 

index (Item set-Mine index) is a novel data structure 

that provides a compact and complete 

representation of transactional data supporting 

efficient item set extraction from a relational 

DBMS. It is characterized by the following 

properties: 

1. It is a covering index. No constraint (e.g., support 

constraint) is enforced during the index 

creation phase. Hence, the extraction can be 

performed by means of the index alone, without 
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accessing the original database. The data 

representation is complete and allows reusing 

the index for mining item sets with any support 

threshold. 

2. The IMine index is a general structure which can 

be efficiently exploited by various item set 

extraction algorithms. These algorithms can be 

characterized by different in-memory data 

representations (e.g., array list, prefix-tree) and 

techniques for visiting the search space. Data 

access functions have been devised for 

efficiently loading in memory the index data. 

Once in memory, data is available for item set 

extraction by means of the algorithm of choice.  

3. The IMine physical organization supports 

efficient data access during item set extraction. 

Correlation analysis allows us to discover data 

accessed together during pattern extraction. To 

minimize the number of physical data blocks 

read during the mining process, correlated 

information is stored in the same block. 

4. IMine supports item set extraction in large data 

sets. We exploit a direct writing technique to 

avoid representing in memory the entire large 

data set. Direct materialization has a limited 

impact on the final index size because it is 

applied only on a reduced portion of the data 

set. 

II. LITERATURE SURVEY  

The goal of data mining is to discover important 

associations among items such that the presence of 

some items in a transaction will imply the presence 

of some other items. To achieve this purpose, many 

people propose different procedures; here we 

discuss some of them. 

E. Baralis et al., [10] recommended itemset 

mining on indexed data blocks. Numerous attempts 

have been offered to combine data mining activities 

with relational DBMSs, but a correct incorporation 

into the relational DBMS kernel has been 

infrequently achieved. This paper suggested an 

innovative indexing method, which denotes the 

transactions in a succinct form, suitable for tightly 

incorporating frequent itemset mining in a 

relational DBMS. The data illustration is complete, 

i.e. no support threshold  

Mining association rules from XML data with index 

table was suggested by Xin-Ye Li et al., [11]. 

Mining XML association rule is tackled with extra 

challenge because of the inherent flexibilities of 

XML in both arrangement and semantics. With the 

purpose of making mining XML association rule 

very efficient, this paper provides a new definition 

of transaction and item in XML environment, then 

construct transaction database depending on an 

index table. Based on the definition and the index 

table utilized for XML searching, it is easy to check 

the relation among the transaction and retrieve an 

item quickly. A high adaptive mining approach is 

also illustrated. By using this approach, mining 

rules can be processed with no assistance of interest 

associations specified by users and mining unknown 

rules. The effectiveness of these approaches is 

proved with the help of experiments on real-life 

data.  

E.J. Keogh et al., [12] proposed an indexing scheme 

for fast similarity search in large time series 

databases. This paper addresses the trouble of 

similarity searching in huge time-series databases. 

The authors proposed an innovative indexing 

approach that permits quicker retrieval. The index 

is produced by generating bins that include time 

series subsequences of roughly the similar shape. 

For every bin, this proposed approach can rapidly 

compute a lower bound on the distance among a 

given query and the most similar element of the bin. 

This bound permits to search the bins in 

greatest-first order, and to prune some bins from the 

search space without verifying the contents. Further 

speedup can be achieved by optimizing the data 

inside the bins in such a way that ignores the process 

of comparing the query to every item in the bin.  

L. Golab et al., [13] proposed indexing time method 

for evolving data with variable lifetimes. Numerous 

applications store data items for a pre-determined, 

fixed duration of time. Examples consist of sliding 

windows over online data streams, in which old data 

are thrown out as the window slides forward. Earlier 

researches on management of data with limited 

lifetimes have emphasized online query processed 

in main memory. In this approach, the authors 

concentrate on the difficulty of indexing time- 

developing data on disk for offline investigation. 

With the intention of decreasing the I/O costs of 

index updates, existing work separates the data 

chronologically. Thus, only the previous separation 

is examined for expirations, only the youngest 

separations acquire insertions, and the remaining 

partitions in the middle are not processed. On the 

other hand, this result is based upon the hypothesis 

that the order in which the data are introduced is 

equivalent to the termination order, which means 

that the lifetime of each data item is the similar. In 

order to break this hypothesis, the authors reveal 

that the existing solutions no longer be relevant, and 

suggested a new index partitioning strategies that 

provide low update costs and quick access times. 

A new approach of modified transaction reduction 

algorithm for mining frequent itemset was proposed 

by R.E. Thevar et al., [14]. Association rule mining 

is to take out the interesting association and relation 

among the huge volumes of transactions. This 

procedure is segmented into two sub problem: first 

problem is to discover the frequent itemsets from the 
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transaction and then the second problem is to build 

the rule from the mined frequent itemset [15]. 

Frequent itemsets creation is the necessary and most 

time huge procedure for association rule mining. 

Currently, most well-organized apriori-like 

algorithms rely deeply on the minimum support 

constraints to prune the enormous amount of 

non-candidate itemsets. These algorithms store 

numerous unnecessary itemsets and transactions. In 

this paper, the authors proposed an innovative 

frequent itemsets creation algorithm called 

MTR-FMA (modified transaction reduction 

depends on frequent itemset mining algorithm) that 

sustains its performance even at relative low 

supports. The experimental output also proves that 

proposed MTR-FMA algorithm on an outset is 

quicker than high efficient AprioriTid and other 

algorithms. 

Lei Wen et al., [16] developed an efficient algorithm 

for mining frequent closed itemset. Association rule 

mining was a significant field of data mining 

investigation. Determining the potential frequent 

itemset was a vital step. The existed frequent 

itemset discovery algorithms could find out all the 

frequent itemset or maximal frequent itemset. N. 

Pasquier developed an innovative job of mining 

frequent closed itemset. The size of frequent closed 

itemset was much lesser than all the frequent 

itemsets and did not lose any information.  

In this paper, we propose a new itemset approach 

depends on the index. This approach can discover 

all the frequent closed itemset powerfully by using 

indexing method. 

III. INDEX STRUCTURE 

Index structure for extracting item set as sequence 

of data blocks. The index supports user 

communication, where the user specifies many 

constraints for itemset extraction. It permits the 

mining of the complete set of itemsets which satisfy 

(a) time constraints and (b) support constraints. 

Since the index contains all feature potentially 

required during the mining task, the extraction can 

be carried out by means of the index, without 

accessing the database. The data representation is 

absolute, i.e., no support threshold is enforced 

throughout the index construction stage, to permit 

reusing the index for mining itemsets with any 

support threshold. Constraints like support and 

confidence is not enforced throughout the index 

creation stage. Therefore, the extraction can be 

carried out using the index alone, without accessing 

the original database. As the databases are 

necessary in almost all the retail stores, super 

markets, etc., it is necessary to develop an approach 

for item set mining with the help of index support.  

The structure of the IMine index is characterized by 

two components: the Item set-Tree and the 

Item-Btree. The two components provide two levels 

of indexing. The Item set-Tree (I-Tree) is a 

prefix-tree which represents relation R by means of 

a succinct and lossless compact structure. 

The Item-Btree (I-Btree) is a B+Tree structure 

which allows reading selected I-Tree portions 

during the extraction task. For each item, it stores 

the physical locations of all item occurrences in the 

I-Tree. Thus, it supports efficiently loading from the 

I-Tree the transactions in R including the item. In 

the following, we describe in more detail the I-Tree 

and the I-Btree structures.  Fig. 1 a and b shows the 

complete structure of the corresponding IMine index. 

In the I-Tree paths (Fig. 1 a), nodes are sorted by 

decreasing support of the corresponding items. In the 

case of items with the same support, nodes are sorted 

by item lexicographical order. In the I-Tree, the 

common prefix of two transactions is represented by a 

single path. 

A. I-Tree 

The I-Tree associated to relation R is actually a 

forest of prefix-trees, where each tree represents a 

group of transactions all sharing one or more items. 

Each node in the I-Tree corresponds to an item in R. 

Each path in the I-Tree is an ordered sequence of 

nodes and represents one or more transactions in R. 

Each item in relation R is associated to one or more 

I-Tree nodes and each transaction in R is 

represented by a unique I-Tree path. Each I-Tree 

node is associated with a node support value, 

representing the number of transactions which 

contain (without any different interleaved item) all 

the items in the sub path reaching the node. 
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Fig 1 (a) I Tree for the example data set 

B. I-Btree 

The I-Btree allows selectively accessing the I-Tree 

disk blocks during the extraction process. It is based 

on a B+Tree structure [21]. Fig. 1 b shows the 

I-Btree for the example data set and a portion of the 

pointed I-Tree. For each item i in relation R, there is 

one entry in the I-Btree. In particular, the I-Btree 

leaf associated to i contains i’s item support and 

pointers to all nodes in the I-Tree associated to item 

i. Each pointer stores the physical location of the 

record in table TI-Tree storing the node. Fig.  1 b 

shows the pointers to the I-Tree nodes associated to 

item r. 

 
Fig 1 (b) I BTree for the example data set 

IV. ITEM SET MINING 

Item set mining are two sequential steps: 1) the 

needed index data is loaded and 2) item set 

extraction takes place on loaded data.  

A. Frequent Item Set Extraction 

This section describes how frequent item set 

extraction takes place on the IMine index. We 

present two approaches, denoted as FP-based and 

LCM-based algorithms, which are an adaptation of 

the FP-Growth algorithm [17] and LCM 

v.2algorithm [18], respectively. 

B. FP-based algorithm: 

The FP-growth algorithm stores the data in a 

prefix-tree structure called FP-tree. First, it 

computes item support. Then, for each transaction, 

it stores in the FP-tree its subset including frequent 

items. Items are considered one by one. For each 

item, extraction takes place on the frequent-item 

projected database, which is generated from the 

original FP-tree and represented in a FP-tree based 

structure. 

C. LCM-based algorithm: 

The LCM v.2 algorithm loads in memory the 

support based projection of the original database. 

First, it reads the transactions to count item support. 

Then, for each transaction, it loads the subset 

including frequent items. Data are represented in 

memory by means of an array based data structure, 

on which the extraction takes place. 

V. EXPERIMENTAL RESULTS 

We validated our approach by means of a large set of 

experiments addressing the following issues: 

 Performance of the IMine index creation, in 

terms of both creation time and index size, 
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 Performance of frequent item set extraction, 

in terms of execution time, memory usage, 

and I/O access time,  

 Effect of the DBMS buffer cache size on hit 

rate,  

 Effect of the index layered organization, 

 Effect of direct writing, and   

 Scalability of the approach. 

We ran the experiments for both dense and 

sparse data distributions. We report experiments on 

six representative data sets whose characteristics 

(i.e., transaction and item cardinality, average 

transaction size (AvgTrSz), and data set size) are in 

Table 1. Connect and Pumsb [19] are dense and 

medium-size data sets. Kosarak [19] is a large and 

sparse data set including click-stream data. 

T10I200P20D2M is a dense and large synthetic data 

set, while T15I100P20C1D5M and 

T20I100P15C1D7M are quite sparse and large 

synthetic data sets. Synthetic data sets are generated 

by means of the IBM generator [20]. For all data 

sets, the index has been generated without enforcing 

any support threshold.

Table 1.  Data Set Characteristics and Corresponding Indices. 

 
 

Table 1 reports both I-Tree and I-Btree size for 

the six data sets. The overall IMine index size is 

obtained by summing both contributions. The IMine 

indices have been created with the default value 

Kavg=1.2. Furthermore, the Connect, Pumsb, 

Kosarak, and T10I200P20D2M data sets have been 

created with Ksup=0, while large synthetic data sets 

with Ksup =0.05. The adopted I-Tree representation 

is more suitable for dense data distributions, for 

which it provides good data compression. In dense 

data sets (e.g., T10I200P20D2M) where data are 

highly correlated, the I-Tree structure is more 

compact. In sparse data sets (e.g., Kosarak), where 

data are weakly correlated, data compression is low 

and storing the I-Tree requires more disk blocks. 

VI. CONCLUSION AND FUTURE WORK 

Due to the world wide increase in the available data, 

it is very difficult for obtaining the related data with 

better accuracy. Therefore the available techniques 

for data mining will not be able to extract the 

relevant data. This leads to the requirement for 

developing a better data mining technique which 

suits all situations. Association rule mining 

technique is one of the better techniques among the 

existing techniques. Even, this technique possesses 

various difficulties when large database used. Later, 

a new technique called indexing is introduced to 

solve those problems. This indexing will carry the 

necessary parameters to classify the required data 

from the large database. This paper provides object 

oriented approach to IMine in a complete and 

compact representation of transactional data. It is a 

general structure that efficiently supports different 

algorithmic approaches to item set extraction. 

Experimental results show that, Selective access of 

the physical index blocks significantly reduces the 

I/O costs and efficiently exploits DBMS buffer 

management strategies. 
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