
International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.1, Issue1, pp-108-113 ISSN: 2249-6645

Abstract— The increase in huge amount of data is

seen clearly in present days because of requirement

for storing more information. To extract certain data

from this large database is a very difficult task. This

leads to the researchers to drag themselves for

developing better technique to mine the required

data. There are various techniques proposed by

several researchers to deal with this difficulty.

Among various available techniques, association rule

mining for extract the required data from the

database is found to be better. This paper presents

the IMine index, a general and compact structure

which provides tight integration of item set extraction

in a relational DBMS Since no constraint is enforced

during the index creation phase, IMine provides a

complete representation of the original database. To

reduce the I/O cost, data accessed together during the

same extraction phase are clustered on the same disk

block. Experiments, run for both sparse and dense

data distributions, show the efficiency of the proposed

index and its linear scalability also for large data sets.

Index Terms— Object Oriented Approach;

IMine; Index Support; Item Set Mining.

I. INTRODUCTION

DATA mining is provoked by decision support

difficulties featured by majority of business

organizations and is illustrated as an significant

field of research. One of the major difficulties in

data mining is creating fast and efficient techniques

that can deals with large volumes of data as majority

mining techniques carry out computation over the

complete database and frequently the databases are

in huge size. Physical analysis of these huge

amount of information stored in modern databases

is very difficult. A recognized data mining

technique is association rule mining. It is able to

discover all interesting relationships which are

called as associations in a database. Association

rules are very efficient in revealing all the

interesting relationships in a relatively large

database with huge amount of data. The large

quantity of information collected through the set of

association rules can be used not only for

illustrating the relation-ships in the database, but

also used for differentiating between different kinds

of classes in a database. But the major difficulty in

association rule mining is its complexity.

Research activity usually focuses on

defining efficient algorithms for item set extraction,

which represents the most computationally

intensive knowledge extraction task in association

rule mining [1]. The data to be analyzed is usually

stored into binary files, possibly extracted from a

DBMS. Most algorithms [2, 3] exploit ad hoc main

memory data structures to efficiently extract item

sets from a flat file. Recently, disk-based extraction

algorithms have been proposed to support the

extraction from large data sets [4,5,6], but still

dealing with data stored in flat files. To reduce the

computational cost of item set extraction, different

constraints maybe enforced [7,8,9], among which

the most simple is the support constraint, which

enforces a threshold on the minimum support of the

extracted item sets.

Relational DBMSs exploit indices, which

are ad hoc data structures, to enhance query

performance and support the execution of complex

queries. In this paper, we propose a similar

approach to support data mining queries. The IMine

index (Item set-Mine index) is a novel data structure

that provides a compact and complete

representation of transactional data supporting

efficient item set extraction from a relational

DBMS. It is characterized by the following

properties:

1. It is a covering index. No constraint (e.g., support

constraint) is enforced during the index

creation phase. Hence, the extraction can be

performed by means of the index alone, without

R.SRIKANTH,

2/2 M.TECH CSE, DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING,

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI,

ANDHRA PRADESH, INDIA.

D.T.V.DHARMAJEE RAO
 PROFESSOR & HOD,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING,

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI,

ANDHRA PRADESH, INDIA.

Implementation of object oriented approach to Index Support

for Item Set Mining (IMine)

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.1, Issue1, pp-108-113 ISSN: 2249-6645

accessing the original database. The data

representation is complete and allows reusing

the index for mining item sets with any support

threshold.

2. The IMine index is a general structure which can

be efficiently exploited by various item set

extraction algorithms. These algorithms can be

characterized by different in-memory data

representations (e.g., array list, prefix-tree) and

techniques for visiting the search space. Data

access functions have been devised for

efficiently loading in memory the index data.

Once in memory, data is available for item set

extraction by means of the algorithm of choice.

3. The IMine physical organization supports

efficient data access during item set extraction.

Correlation analysis allows us to discover data

accessed together during pattern extraction. To

minimize the number of physical data blocks

read during the mining process, correlated

information is stored in the same block.

4. IMine supports item set extraction in large data

sets. We exploit a direct writing technique to

avoid representing in memory the entire large

data set. Direct materialization has a limited

impact on the final index size because it is

applied only on a reduced portion of the data

set.

II. LITERATURE SURVEY

The goal of data mining is to discover important

associations among items such that the presence of

some items in a transaction will imply the presence

of some other items. To achieve this purpose, many

people propose different procedures; here we

discuss some of them.

E. Baralis et al., [10] recommended itemset

mining on indexed data blocks. Numerous attempts

have been offered to combine data mining activities

with relational DBMSs, but a correct incorporation

into the relational DBMS kernel has been

infrequently achieved. This paper suggested an

innovative indexing method, which denotes the

transactions in a succinct form, suitable for tightly

incorporating frequent itemset mining in a

relational DBMS. The data illustration is complete,

i.e. no support threshold

Mining association rules from XML data with index

table was suggested by Xin-Ye Li et al., [11].

Mining XML association rule is tackled with extra

challenge because of the inherent flexibilities of

XML in both arrangement and semantics. With the

purpose of making mining XML association rule

very efficient, this paper provides a new definition

of transaction and item in XML environment, then

construct transaction database depending on an

index table. Based on the definition and the index

table utilized for XML searching, it is easy to check

the relation among the transaction and retrieve an

item quickly. A high adaptive mining approach is

also illustrated. By using this approach, mining

rules can be processed with no assistance of interest

associations specified by users and mining unknown

rules. The effectiveness of these approaches is

proved with the help of experiments on real-life

data.

E.J. Keogh et al., [12] proposed an indexing scheme

for fast similarity search in large time series

databases. This paper addresses the trouble of

similarity searching in huge time-series databases.

The authors proposed an innovative indexing

approach that permits quicker retrieval. The index

is produced by generating bins that include time

series subsequences of roughly the similar shape.

For every bin, this proposed approach can rapidly

compute a lower bound on the distance among a

given query and the most similar element of the bin.

This bound permits to search the bins in

greatest-first order, and to prune some bins from the

search space without verifying the contents. Further

speedup can be achieved by optimizing the data

inside the bins in such a way that ignores the process

of comparing the query to every item in the bin.

L. Golab et al., [13] proposed indexing time method

for evolving data with variable lifetimes. Numerous

applications store data items for a pre-determined,

fixed duration of time. Examples consist of sliding

windows over online data streams, in which old data

are thrown out as the window slides forward. Earlier

researches on management of data with limited

lifetimes have emphasized online query processed

in main memory. In this approach, the authors

concentrate on the difficulty of indexing time-

developing data on disk for offline investigation.

With the intention of decreasing the I/O costs of

index updates, existing work separates the data

chronologically. Thus, only the previous separation

is examined for expirations, only the youngest

separations acquire insertions, and the remaining

partitions in the middle are not processed. On the

other hand, this result is based upon the hypothesis

that the order in which the data are introduced is

equivalent to the termination order, which means

that the lifetime of each data item is the similar. In

order to break this hypothesis, the authors reveal

that the existing solutions no longer be relevant, and

suggested a new index partitioning strategies that

provide low update costs and quick access times.

A new approach of modified transaction reduction

algorithm for mining frequent itemset was proposed

by R.E. Thevar et al., [14]. Association rule mining

is to take out the interesting association and relation

among the huge volumes of transactions. This

procedure is segmented into two sub problem: first

problem is to discover the frequent itemsets from the

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.1, Issue1, pp-108-113 ISSN: 2249-6645

transaction and then the second problem is to build

the rule from the mined frequent itemset [15].

Frequent itemsets creation is the necessary and most

time huge procedure for association rule mining.

Currently, most well-organized apriori-like

algorithms rely deeply on the minimum support

constraints to prune the enormous amount of

non-candidate itemsets. These algorithms store

numerous unnecessary itemsets and transactions. In

this paper, the authors proposed an innovative

frequent itemsets creation algorithm called

MTR-FMA (modified transaction reduction

depends on frequent itemset mining algorithm) that

sustains its performance even at relative low

supports. The experimental output also proves that

proposed MTR-FMA algorithm on an outset is

quicker than high efficient AprioriTid and other

algorithms.

Lei Wen et al., [16] developed an efficient algorithm

for mining frequent closed itemset. Association rule

mining was a significant field of data mining

investigation. Determining the potential frequent

itemset was a vital step. The existed frequent

itemset discovery algorithms could find out all the

frequent itemset or maximal frequent itemset. N.

Pasquier developed an innovative job of mining

frequent closed itemset. The size of frequent closed

itemset was much lesser than all the frequent

itemsets and did not lose any information.

In this paper, we propose a new itemset approach

depends on the index. This approach can discover

all the frequent closed itemset powerfully by using

indexing method.

III. INDEX STRUCTURE

Index structure for extracting item set as sequence

of data blocks. The index supports user

communication, where the user specifies many

constraints for itemset extraction. It permits the

mining of the complete set of itemsets which satisfy

(a) time constraints and (b) support constraints.

Since the index contains all feature potentially

required during the mining task, the extraction can

be carried out by means of the index, without

accessing the database. The data representation is

absolute, i.e., no support threshold is enforced

throughout the index construction stage, to permit

reusing the index for mining itemsets with any

support threshold. Constraints like support and

confidence is not enforced throughout the index

creation stage. Therefore, the extraction can be

carried out using the index alone, without accessing

the original database. As the databases are

necessary in almost all the retail stores, super

markets, etc., it is necessary to develop an approach

for item set mining with the help of index support.

The structure of the IMine index is characterized by

two components: the Item set-Tree and the

Item-Btree. The two components provide two levels

of indexing. The Item set-Tree (I-Tree) is a

prefix-tree which represents relation R by means of

a succinct and lossless compact structure.

The Item-Btree (I-Btree) is a B+Tree structure

which allows reading selected I-Tree portions

during the extraction task. For each item, it stores

the physical locations of all item occurrences in the

I-Tree. Thus, it supports efficiently loading from the

I-Tree the transactions in R including the item. In

the following, we describe in more detail the I-Tree

and the I-Btree structures. Fig. 1 a and b shows the

complete structure of the corresponding IMine index.

In the I-Tree paths (Fig. 1 a), nodes are sorted by

decreasing support of the corresponding items. In the

case of items with the same support, nodes are sorted

by item lexicographical order. In the I-Tree, the

common prefix of two transactions is represented by a

single path.

A. I-Tree

The I-Tree associated to relation R is actually a

forest of prefix-trees, where each tree represents a

group of transactions all sharing one or more items.

Each node in the I-Tree corresponds to an item in R.

Each path in the I-Tree is an ordered sequence of

nodes and represents one or more transactions in R.

Each item in relation R is associated to one or more

I-Tree nodes and each transaction in R is

represented by a unique I-Tree path. Each I-Tree

node is associated with a node support value,

representing the number of transactions which

contain (without any different interleaved item) all

the items in the sub path reaching the node.

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.1, Issue1, pp-108-113 ISSN: 2249-6645

Fig 1 (a) I Tree for the example data set

B. I-Btree

The I-Btree allows selectively accessing the I-Tree

disk blocks during the extraction process. It is based

on a B+Tree structure [21]. Fig. 1 b shows the

I-Btree for the example data set and a portion of the

pointed I-Tree. For each item i in relation R, there is

one entry in the I-Btree. In particular, the I-Btree

leaf associated to i contains i’s item support and

pointers to all nodes in the I-Tree associated to item

i. Each pointer stores the physical location of the

record in table TI-Tree storing the node. Fig. 1 b

shows the pointers to the I-Tree nodes associated to

item r.

Fig 1 (b) I BTree for the example data set

IV. ITEM SET MINING

Item set mining are two sequential steps: 1) the

needed index data is loaded and 2) item set

extraction takes place on loaded data.

A. Frequent Item Set Extraction

This section describes how frequent item set

extraction takes place on the IMine index. We

present two approaches, denoted as FP-based and

LCM-based algorithms, which are an adaptation of

the FP-Growth algorithm [17] and LCM

v.2algorithm [18], respectively.

B. FP-based algorithm:

The FP-growth algorithm stores the data in a

prefix-tree structure called FP-tree. First, it

computes item support. Then, for each transaction,

it stores in the FP-tree its subset including frequent

items. Items are considered one by one. For each

item, extraction takes place on the frequent-item

projected database, which is generated from the

original FP-tree and represented in a FP-tree based

structure.

C. LCM-based algorithm:

The LCM v.2 algorithm loads in memory the

support based projection of the original database.

First, it reads the transactions to count item support.

Then, for each transaction, it loads the subset

including frequent items. Data are represented in

memory by means of an array based data structure,

on which the extraction takes place.

V. EXPERIMENTAL RESULTS

We validated our approach by means of a large set of

experiments addressing the following issues:

 Performance of the IMine index creation, in

terms of both creation time and index size,

International Journal of Modern Engineering Research (IJMER)

www.ijmer.com Vol.1, Issue1, pp-108-113 ISSN: 2249-6645

 Performance of frequent item set extraction,

in terms of execution time, memory usage,

and I/O access time,

 Effect of the DBMS buffer cache size on hit

rate,

 Effect of the index layered organization,

 Effect of direct writing, and

 Scalability of the approach.

We ran the experiments for both dense and

sparse data distributions. We report experiments on

six representative data sets whose characteristics

(i.e., transaction and item cardinality, average

transaction size (AvgTrSz), and data set size) are in

Table 1. Connect and Pumsb [19] are dense and

medium-size data sets. Kosarak [19] is a large and

sparse data set including click-stream data.

T10I200P20D2M is a dense and large synthetic data

set, while T15I100P20C1D5M and

T20I100P15C1D7M are quite sparse and large

synthetic data sets. Synthetic data sets are generated

by means of the IBM generator [20]. For all data

sets, the index has been generated without enforcing

any support threshold.

Table 1. Data Set Characteristics and Corresponding Indices.

Table 1 reports both I-Tree and I-Btree size for

the six data sets. The overall IMine index size is

obtained by summing both contributions. The IMine

indices have been created with the default value

Kavg=1.2. Furthermore, the Connect, Pumsb,

Kosarak, and T10I200P20D2M data sets have been

created with Ksup=0, while large synthetic data sets

with Ksup =0.05. The adopted I-Tree representation

is more suitable for dense data distributions, for

which it provides good data compression. In dense

data sets (e.g., T10I200P20D2M) where data are

highly correlated, the I-Tree structure is more

compact. In sparse data sets (e.g., Kosarak), where

data are weakly correlated, data compression is low

and storing the I-Tree requires more disk blocks.

VI. CONCLUSION AND FUTURE WORK

Due to the world wide increase in the available data,

it is very difficult for obtaining the related data with

better accuracy. Therefore the available techniques

for data mining will not be able to extract the

relevant data. This leads to the requirement for

developing a better data mining technique which

suits all situations. Association rule mining

technique is one of the better techniques among the

existing techniques. Even, this technique possesses

various difficulties when large database used. Later,

a new technique called indexing is introduced to

solve those problems. This indexing will carry the

necessary parameters to classify the required data

from the large database. This paper provides object

oriented approach to IMine in a complete and

compact representation of transactional data. It is a

general structure that efficiently supports different

algorithmic approaches to item set extraction.

Experimental results show that, Selective access of

the physical index blocks significantly reduces the

I/O costs and efficiently exploits DBMS buffer

management strategies.

REFERENCES

[1] R. Agrawal and R. Srikant, “Fast Algorithm for

Mining Association Rules,” Proc. 20th Int’l Conf.

Very Large Data Bases (VLDB ’94), Sept. 1994.
[2] J. Han, J. Pei, and Y. Yin, “Mining Frequent Patterns without

Candidate Generation,” Proc. ACM SIGMOD, 2000.

[3] H. Toivonen, “Sampling Large Databases for Association

Rules,” Proc. 22nd Int’l Conf. Very Large Data Bases (VLDB

’96), pp. 134-145,1996.

[4] M. El-Hajj and O.R. Zaiane, “Inverted Matrix: Efficient

Discovery of Frequent Items in Large Datasets in the Context

of Interactive Mining,” Proc. Ninth ACM SIGKDD Int’l

Conf. Knowledge Discovery and Data Mining (SIGKDD),

2003.

[5] G. Grahne and J. Zhu, “Mining Frequent Itemsets from

Secondary Memory,” Proc. IEEE Int’l Conf. Data Mining

(ICDM ’04), pp. 91-98, 2004.

[6] G. Ramesh, W. Maniatty, and M. Zaki, “Indexing and Data

Access Methods for Database Mining,” Proc. ACM SIGMOD

Workshop Data Mining and Knowledge Discovery (DMKD),

2002.

[7] Y.-L. Cheung, “Mining Frequent Itemsets without Support

Threshold: With and without Item Constraints,” IEEE Trans.

Knowledge and Data Eng., vol. 16, no. 9, pp. 1052-1069,

Sept. 2004.

[8] G. Cong and B. Liu, “Speed-Up Iterative Frequent Itemset

Mining with Constraint Changes,” Proc. IEEE Int’l Conf.

Data Mining (ICDM ’02), pp. 107-114, 2002.

[9] C.K.-S. Leung, L.V.S. Lakshmanan, and R.T. Ng, “Exploiting

Succinct Constraints Using FP-Trees,” SIGKDD

Explorations Newsletter, vol. 4, no. 1, pp. 40-49, 2002.

[10] E. Baralis, T. Cerquitelli, and S. Chiusano, “Index Support

for Frequent Itemset Min-ing in a Relational DBMS,”

Proceedings 21st International Conference on Data

En-gineering (ICDE), pp. 754 - 765, 2005.

[11] Xin-Ye Li, Jin-Sha Yuan and Ying-Hui Kong, “Mining

Association Rules from XML Data with Index Table,”

International Conference on Machine Learning and

Cy-bernetics, Vol. 7, pp. 3905 – 3910, 2007.

[12] E.J. Keogh and M.J. Pazzani, “An index-ing scheme for fast

similarity search in large time series databases,” Eleventh

Interna-tional Conference on Scientific and Statis-tical

Database Management, pp. 56 – 67, 1999.

[13] L. Golab, P. Prahladka and M.T. Ozsu, “Indexing

Time-Evolving Data With Varia-ble Lifetimes,” 18th

International Confe-rence on Scientific and Statistical

Database Management, pp. 265 – 274, 2006.

[14] R.E. Thevar and R. Krishnamoorthy, “A new approach of

modified transaction re-duction algorithm for mining frequent

itemset,” 11th International Conference on Computer and

Information Technology (ICCIT 2008), pp. 1 – 6, 2008.

[15] Jianyong Wang, J. Han, Y. Lu and P. Tzvetkov, “TFP: an

efficient algorithm for mining top-k frequent closed itemsets”

IEEE Transactions on Knowledge and Data Engineering, Vol.

17, No. 5, pp. 652 – 663, 2005.

[16] Lei Wen, “An efficient algorithm for min-ing frequent closed

itemset,” Fifth World Congress on Intelligent Control and

Auto-mation (WCICA 2004), Vol. 5, pp. 4296 – 4299, 2004.

[17] J. Han, J. Pei, and Y. Yin, “Mining Frequent Patterns without

Candidate Generation,” Proc. ACM SIGMOD, 2000.

[18] T. Uno, M. Kiyomi, and H. Arimura, “LCM ver. 2: Efficient

Mining Algorithms for Frequent/Closed/Maximal

Itemsets,”Proc. IEEE ICDM Workshop Frequent Itemset

Mining Implementations (FIMI), 2004.

[19] FIMI, http://fimi.cs.helsinki.fi/, 2008.

[20] N. Agrawal, T. Imielinski, and A. Swami, “Database Mining:

A Performance Perspective,” IEEE Trans. Knowledge and

Data Eng., vol. 5, no. 6, Dec. 1993.

